S

Workshop
Angular Rouling

workshops.de

Routing

No Single Page Application without routing

workshops.de

Why routing

> A website consists of multiple pages for displaying various content.

> Angular applications are single-page applications (SPAs), meaning
they typically have only one HTML page.

> Routing is the mechanism used to navigate within an Angular app

without physically leaving or reloading the page.

Basic routing

Basic Routing

> Based on browser location and history
> Map of url to content

> Special package: @angular/router

Basic Routing

> Define routes per feature

> An extra file for route configuration:

feature-name.routes.ts

Basic Routing

Define routes

import { Routes } from '@angular/router’

export const routes: Routes = [{ 11

Basic Routing

Register routes

import { provideRouter } from '@angular/router’;
import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {
providers: [provideHttpClient(), provideRouter(routes)]

Iy

Basic Routing

Defining a route - without leading ‘/’!

path: 'books',
component: BookComponent

¥

Default routes

Routing wildcard

Set a wildcard to handle all not defined routes

{
path: "**"]
component: PageNotFoundComponent

¥

Routing Redirection

Redirect to default router

path: "',
redirectTo: '/books',
pathMatch: 'full'’

}

Displaying routes

Basic Routing

> No connection between DOM and route, yet
> Router needs to know where he should append the component

> Special component: RouterOutlet

Basic Routing

Routing components are available through the routing import

@Component ({

imports: [RouterOutlet],

1)

export class AppComponent {}

<router-outlet></router-outlet>

Basic Routing

1. Urlin browser matches against route path
2. Information of connected route are evaluated

3. Information are used to show correct component in routerOutlet

Basic Routing

(@ localhost:3000/books

Routes = [{ path: 'books', component: BookComponent }, ...];

<router-outlet></router-outlet>
<app-book>...</app-book>

routerLink

RouterLink example

+

{ path: 'books', component: BookComponent }

RouterLink import

@Component ({

imports: [RouterLink],

1)
export class AppComponent {}

lask

Add basic routing

oooooooooooo

Routing with
parameters

Routing with parameters

> You need dynamic routes very often, e.g. Detail Views
> Content of a component is configurable

> You need additional data in your component

Routing with parameters

Add parameter placeholders with a leading “:

{ path: 'books/detail/:isbn', component: BookDetailComponent }

routerLink with
params

RouterLink with params example

<a [routerLink]=" ['/books', '/detail', 1] ">
+

{ path: 'books/detail/:isbn’', component: BookDetailComponent }

Retrieve route
params in a
component class

Route params

Inject ActivatedRoute service and subscribe params observable.

private readonly route = inject(ActivatedRoute)

this.route
.params
.subscribe((params) => ...);

Why an Observable?

Route params

> Angular has some caching mechanisms

> Current component and components on the same level in the tree are

cached for faster navigation
> Components are not instantiated again

> But parameters could have changed, e.g. paging

Simple approach
with snapshots

Route params - Snapshots

> Snapshots are images of the current state
> ActivatedRoute gives access to the current router state

> (Can be used if not future changes expected

Route params - Snapshots

The params of a route are stored in a snapshot object.

private readonly route = inject(ActivatedRoute)

const bookIsbn = this.route.snapshot.paramMap.get('isbn');

Navigate with Router
Injectable

Router Service

Trigger navigation from Component Class

private readonly router = inject(Router)
private readonly bookApi = inject(BookApiService)

goToBookDetails(book: Book) {
this.router.navigate(['books"', 'detail', book.isbn]);

}

lask

Add BookDetail Route

workshops.de

Nested & child routes

workshops.de

Nested routes

> An app / feature can have sub features with own components
> Each (sub) feature can manage its own routes

> No need to change root routing

Think in Features & Components

Book Feature —

0~

_ App

Book a Navigation |

BookList a O BookDetail

Nested routes

Routes of a book feature with a root book component

export const bookRoutes: Routes = [
{
path: 'books',
component: BookComponent

}
|

Child routes

HTML with child route - book.component.html has its own routerOutlet

<app-root>
<router-outlet></router-outlet>
<book>
<router-outlet></router-outlet>
</book>
</app-root>

Child routes

> A route can have children
> Each child gets its parent path as base path

> Child route will be displayed in the RouterOutlet of its parent

Child routes

BookList and BookDetail as route children under its parent Book

path: 'books',
component: BookComponent,

children: [
{
path: '', component: BookListComponent
}s
{
path: 'detail/:isbn', component: BookDetailComponent
}

]

Routes - absolute links

@ http://localhost:4200/other-feature/sub/

Parent Chlild

<a [routerLink]=" ['/books', ‘detail’, 1] ">

@ http://localhost:4200/books/detail/1

Routes - relative links

@ http://localhost:4200/books

<a [routerLink]=" ['detail’, 1] ">

@ http://localhost:4200/books/detail/1

Lazy Loading

Load Routes and Features only if they are needed

workshops.de

Lazy Loading

> You do not want to load everything at once
> Split up your app in smaller parts — load them when needed
> Smaller initial bundle size — faster initial loading

> Routes with complex code or many dependencies but mostly not

opened — add lazy loading

Lazy Loading

Request Books feature if needed - app.routes.ts

export const routes: Routes = |

path: 'books',
loadChildren: () => import('./book/book.routes"')
.then(mod => mod.bookRoutes)

|

Book components imports In
other app.*.ts are NOT needed
anymore!

Lazy Loading Compiler

Initial Chunk Files | Names Raw Size
polyfills 82.71

Initial Total | 99.62 kB

Lazy Chunk Files | Names Raw Size

K-routes

Lazy Loading Browser

=l localhost
<) client

<) styles.css

() polyfills.js
2l mainjs

) env.mjs

*l @angular_platform-browser.js?v=a5470a40
@angular_common_http.js?7v=a5470a40

J chunk-NWC5VNPT js

<) @angular_router.js?v=a5470a40

[2) @angular_core.js?v=a5470a40

} chunk-GQJGIDNZjs?v=c5777549

) chunk-CC6FZOYQ.js?v=c5777549

Y} chunk-MTWEUAWN.,js?v=c5777549

2} chunk-SO4ATP2U js?v=c5777549

localhost

2} detect_angular_for_extension_icon_bundle,js
(&) chunk-SESNDNBN.js

JJ @angular_common.js?v=a5470a40
<] @angular_core_nxjs-interop.js?v=a5470a40

} books

General

Request URL:
Request Method:
Status Code:
Remote Address:

Referrer Policy:

Response Headers

Access-Control-Allow-Origin:

Connection:
Date:
Keep-Alive:

Request Headers

Accept:
Accept-Encoding:
Accept-Language:
Connection:

Dnt:

Host:
If-None-Match:
Origin:

http://localhost:4200/books

http://localhost:50717/chunk-SESNDNBN.js
GET

strict-origin-when-cross-origin

keep-alive
Mon, 08 Jan 2024 12:07:55 GMT

timeout=5

T
gzip, deflate, br

de en-DE;q=0.9,en;q=0.8,de-DE;q=0.7,nl:q=0.6
keep-alive

1

localhost:50717
W/*4144-xr103hSBYGqR6creNXYXmxMdwG8®
http://localhost:50717

chunk-+*. js is loaded

lask

Use Lazy Loading for Book feature

workshops.de

Route Guards

workshops.de

Why guards?

Why guards?

> You want to protect your routes against unwanted access

> Sometimes you may have restricted permissions

> User have to be signed in to see the content

> Protect the user

> Notify him about unsaved changes, before leaving the route

Route Guards

> Angular defines Function Types
> Guards have to return boolean, URLTree or RedirectCommand

> Guards functions can return static values or async values (Promise or

Observables)

> Possibility to have asynchronous guard functions, e.g. authorization
check with an AP

Route Guards

> 5 kinds of route guards
> Implement a function and use it on multiple guards

> Guards are route based and not component based

Route Guards

canDeactivate

canActivate

canActivateChild

resolve

Route Guards

canDeactivate
canActivate

canActivateChild

canMatch

resolve

s it permissible for users to exit
a route?

Verify if the data has been
successfully saved.

Receive notifications when
leaving the route.

Route Guards

canDeactivate e Verify whether the route can be
activated.

canActivate

e Confirmthe user's
canActivateChild authentication status.

e e Validate the user's access rights.

resolve

Route Guards

canDeactivate

canActivate

canActivateChild

canMatch

resolve

A route may have subordinate
routes.

Verify whether subordinate
routes can be activated.

If all child routes share the
same "canActivate" function,
you can implement a single
check for all of them.

Route Guards

canDeactivate

canActivate

canActivateChild

canMatch

resolve

Avoid to match the current path
Avoid to load the content of the
route (lazy loading)

Multiple declarations of same
path are possible

Route recognition will not be
aborted

Route Guards

canDeactivate e Fetch data prior to component
loading.

canActivate
e Able to handle any return value,

canActivateChild such as Observables.

canMatch

resolve

Guards as functions

Guards as functions

> Return types are exported by @angular/router

> Type names:

> canActivate guard — CanActivateFn type

> canDeactivate guard — CanDeactivateFn type

>

Guards as functions

> One guard have a generic option

> You might want access to the component, their information and current state

> function confirmlLeaveGuard:CanDeactivateFn<BookDetailComponent>

> All others not:

> function hasAccessGuard: CanActivateFn

Guards as functions

Simple guard function

import { CanActivateFn } from '@angular/router’;

export const hasAccessGuard: CanActivateFn =
(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) => {
return true;

};

Guards as functions

Connect a guard with a route

{
path: 'books',

component: BookComponent,
canActivate: [hasAccessGuard]

¥

Guards as classes (deprecated)

> An Angular Service

> A class that implements the guard interfaces

Guards as classes (deprecated)

Simple guard service

@Injectable({
providedIn: 'root’
})
export class CanActivateViaServiceGuard implements CanActivate {
canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) {
return true;

}
¥

lask

Build a simple canDeactivate guard

workshops.de

Stateful guard functions

workshops.de

Stateful Route Guards

> Functions can use existing services to be stateful

> inject function can be used in this context

Stateful Route Guards

inject service

import { inject } from '@angular/core’;

import { ServiceA } from './service-a';

export const hasAccessGuard: CanActivateFn =
(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) => {

const service = inject(ServiceA);

lask

Build a guard with state

workshops.de

Automatic Parameter Binding

workshops.de

Automatic Component Input Binding

> Router can bind inputs from parameters / data automatically
> Additional feature of the router itself

> input() binding name must match path parameter / data name

Router feature ComponentinputBinding

Activate feature

provideRouter(routes, withComponentInputBinding())

Router feature ComponentinputBinding

Use feature

{
path: 'detail/:isbn’',

component: BookDetailComponent,

¥

export class BookDetailComponent {

isbn = input.required<string>()

lask

Use ComponentinputBinding

workshops.de

%, symetics

oooooooooooo

